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Backlund transformations for the Korteweg-de Vries and 
modified Korteweg-de Vries equations with perturbations 

Alexander A Alexeyev 
11-4-408, proad Odowskogo, Moscow 117574, Russia 

Received 25 September 1992, in final form 1 November 1993 

Abstract. Approximating pseudopotentials associated with scattering problems and with 
Biicklund transformations are derived for the perturbed Kogeweg-de Vries and modified 
Korteweg-de Vries equations. Recursion formulas for approximate conservation laws are 
obtained for the perturbed Kotteweg.de Vries equation as well. As an example, the auto- 
Bicklund transformations are used to construct approximate one and two-soliton solutions. 

1. Introduction 

It is known that integrable models describing physical processes, such as the Korteweg- 
de Vries (Kdv) and modified Korteweg-de Vries. (MKdv) equations, are derived as the 
leading-order approximations of the original 'non-integrable' models. In doing so terms 
with a small parameter are not taken into account. However, as a rule. these terms are 
necessary for the comprehensive description of the phenomena under consideration. The 
existence of such terms in partial differential equations is caused by weak nonlinearities, 
dissipation, etc. In order to find solutions for such equations that correctly describe 
physical systems of interest, there,is no need to employ exact methods. In fact, any 
exact solution would be only an approximation to a real process and therefore the use 
of an approximation is more than sufficient. 

The pseudopotential technique, which allows one to construct exact BHcklund trans- 
formations, scattering problems, etc, is well known for integrable nonlinear equations 
[I]. In the present work its generalization for non-integrable ones with a small parameter 
[2] is applied to find the approximate recursion formulas for conservation laws, Back- 
lund transformations, and scattering technique for the perturbed Kdv and MKdv 

The following definition of approximating pseudopotentials was proposed [2]. Let 
equations. -~ 

us take an evolution differential equation with a small parameter 

ut= K(x, 4 U, U,, . . . , U"X, 4 n s N  I€[ << 1. (1.1) 

A function @(x, t )  (vectorial in general) is called an approximating pseudopotential 
(AP) of the mth order for (1.1) if it is determined by a pair of equations 

~~ 

(1.2) 
qx=P(x ,  t ; u , .  . . , & ; q ;  E )  

qt=Q(x, f, 0, . . . , 0 1 x ;  4; 6) 

. ,  

l e N  v=v(x ,  t )  
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whose compatibility condition 

qx, - qtx = 0 
can be presented as 

L(v,-K(x,t ,v,  ..., k, E))+O(E'"+~)=O m e N  (1.4) 
where L is a linear differential operator with vectorial coefficients. - 

totic series 
The function v is an approximation for U in the sense that vi (i= 0, m) in an asymp- 

U =  vo+ &VI + &+. . 

Kj=O j=O, m (1.5) 

satisfy the same equations 
- 

as in a direct perturbations appjoach. Employing the method of multiple scales, the 
operator L is replaced by the expansion 

L= Lo+ ELI +. . . 

v , - K = & + E K , + ~ K ~ +  .... 
and U, - K is expended as 

Then equating the coefficients of each order in E up to E" to zero in (1.4), one obtains 

&Ko=O 

LoKi+ L,-,K,=O i=  1, m. 
- i- I 

j - 0  

For these relations to be fulfilled, it is sufficient that equations (1.5) are satisfied. The 
use of the direct method for (1.2) leads to a set of the exact linear pseudopotentials of 
(1.5),~and this allows one to apply such exact pseudopotentials for obtaining approxi- 
mate solutions in case q is an unbounded function. 

In the following we assume that P and Q do not depend explicitly on x and t and 
that P depends only on U, q and E. 

The general procedure for finding P and Q with 

P(V,q; &)=PofEP]+ ...+ E'"PmfE'nC'Rl 

Q(u, .~. . , v<n-i)x,q; E ) = Q o + E Q I + .  . .+EmQ,n+~mc'R2 

R I ,  Rz=O(l )  

now consists in solving consecutively the recursion relations [2] 

in the same manner as proposed in [3,4] and in determining R I ,  R2. Since the relations 
to be solved for Pi,  Q, ( i > O )  are linear inhomogeneous equations with right-hand parts 
depending on the perturbation, arbitrary constants appear in their solutions. 
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where P and Q are some matrices depending rationally on the spectral parameter il [SI. 
As equations (1.7) and (1.8) are linear up to E" order, the inverse scattering transform 
can immediately be used to solve (1.1) approximately. However, applying a technique 
analogous to that proposed and developed in [6,7], these APS may also be used to find 
higher-order corrections to an approximate solution. 

Taking into account (1.4), (1.7) and (1.8), let us write (111) as 

([ , ] denotes the matrix commutator.) Differentiating (1.7) with respect to f and taking 
into consideration (1.9), one has 

Then inserting (1 3 )  into this equation, one obtains 

T,- PT= -Em+'Rq. 

This inhomogeneous form of (1.7) can be solved by the method of variation of 
parameters 

T= -E>"+ I @(x) j x  @-'(z)Rq dz  
-CO 

where @(x) is the fundamental system of solutions for (1.7). To obtain higher-order 
corrections, one needs to take into account the expression for Tin (1.7) and (1.8) and 
employ iterations [6,7]. 

2. The approximating pseudopotentials and approximate solutions of the perturbed Kdv 
equation 

In the description of weakly nonlinear, long wavelength waves propagating on the 
surface of an incompressible, inviscid, irrotational fluid the following perturbed Kdv 
equation (PKdv) arises [8] 

~,+6u~,f~,,,+ E ( - a ~ u s + p u u , , + y u . ~ u , + 6 u . ~ ~ ~ ~ ~ ) = 0  IEI<<I. (2.1) 

Here a, p, y, 6 are constant parameters; E is the amplitude-to-depth ratio. The deriva- 
tion of this equation, computer simulation, and experimental results for (2.1) may be 
found in [XI.  Approximate soliton and cnoidal waves are also presented there. 
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In principle, equation (2.1) can be transformed into a higher-order K d v  equation 
[9] by means of a so-called canonical map up to order E [IO, 111. The corresponding 
nonlinear integro-differential operator of the second order can be applied to find some 
special approximate solutions of (2.1), but its use together with a Lax pair of the higher- 
order K d v  for solving an initial problem is restricted because of integration and the 
necessity to restore a function u(x, t ) .  In addition, that transformation maps the hier- 
archy of local conservation laws for the higher-order K d v  into approximate nou- 
local conservation laws, while a hierarchy of local ones, which is important from the 
viewpoint of physical applications, remains unknown. 

In the present work for the study of equation (2.l), we use APS that lead to a 
scatteripg problem and Backlund transformations. As an example, the one and two- 
soliton solutions of (2.1) are constructed up to order E. The recursion formulas for 
approximate local conservation laws are also derived. We shall consider the simplest 
.e of the first order 

qx=Po(u, q)+ E P I ( V ,  4) 

q,=Qo(v,v , ,~  .~~,q)+&Ql(V,...,v,,q) 

choosing as Po, Qo the following expressions, which correspond to a pseudopotential 
of the K d v  equation and give rise both to the Lax pair [12] and to auto-Backlund 
transformation [ 131 

Po=(a+v)E-F 

Qo (4k2+ 2Av - 20' - u,)E+ 2(v - 2A)F- v,H. 

Here E, F, H are as follows 

H=2g E= 1 F= -4' (2.2) 

and form a representation of the Lie-algebra d ( 2 )  under the bracket of formula (1.6). 
In appendix 1 a general form and particular solutions for PI and Ql are presented. 

In particular, taking into account (Al.1) and (A1.2), the above AP can be of the type 

q.r=q2+ A+ U+ 4Aq2(n-2p+ yS.306) +&(-U -2p - y + 106) +6cqz f6Mq 

+ 6hvq+ 6qb - 6Ac+ u2(-3P + y + 108) - 6cv +&),I6 12.3) 

q,=4~-2qzv-2qv,+4a*+2av-2v2-v,+ E ( 8 q 2 k 2 ( a - ~ ~ + Y +  186)  

+ 2 V v ( - 3 a  + 2p - 3y-266)  + 24dcq2+ 2q2v2(2a +4p + y - 186) 

- 12cq2V- 6h$v,+ $u.rx(a '28 + y - 226) +24q%+ 24A2hq 

+ 12?.hqv+4J.qv,(-a - y+26)  +24Aqb- 12hqv2 

+4quvX(- y + 2 6 )  - 12qvb - 6hqv, - 126qv, 

+4A3(or-2P+y+66)+4A2v(a+y-26)-24A2c 

+ 2au2(a +2~-48) ' -  122~0 + 12a8~,~ ,~  +48h+2$(a + 5p - y- 188) 

+ I2cv2+2uv,,(-y-46)+12av+2v:(-y+26) 

-6~.&+ 6 ~ ~ . ~ , - 6 6 ~ ~ ~ , ~ ) / 6  U, b,  c, h=constant. (2.4) 



The perturbed Kdv and MKdv equations 869 

Since the Riccati equations can be linearized, the form of these equations permits us 
to use them for deriving a Lax pair and auto-Backlund transformation. Following [I21 
and inserting q=(ln y), into (2.3) and (2.4), one has the approximate Lax pair for 
equation (2.1): 

- y,, + €((-a - 2 p  - y + 1O6)us/6 + hu + b + ha)y+ 

+(&(-a+ ( a  + 5p  - 206)V2/6 + 21  ( p  - 106)~/3  

+az(-a + 2 p  - y-  306) /6 )  - ~-a)t)y=o 
-v, +(&(-6hu,+ 2 (a  + 2 p  - 8 6 ) ~ ~ +  sa (p - 4 6 ) ~  ~ ~ 

+u,,(a+2p+ y - '226)  + 2 4 a + 4 a Z ( a  - 2 p  + y + 6 6 ) ) / 6  

- . 2 ( ~  - 2 1 ) ) ~ , +  ((&(2(Y- 26 )U,U+21  (a  + y - 26)ux-  3hU2 

+ 6(b -hA)v+ 66~, , , ) /6  + uX)y = 0 12.6) 

(1 is the spectral parameter,~and the terms of the order U(&*) %the coefficients of 
Y.~, y are missing). Clearly, at E = O ,  (2.5) and (2.6) are transformed into the well- 
known Lax pair of the K d v  equation [9,13]. 

Equations (2.5) and (2.6) can be used to solve approximately the initial-value prob- 
lems of equation (2.1). In principle, the constants in (2.5) may be chosen in such a way 
as to bring the spectral problem to the well-known type. For instance, letting b. h=O 
for the case j3 = 106 and cz + y= -106, one arrives at the following problem, which 
differs from the Kdv spectral problem [9, 131 by the type of potential 

y.u + ( EU + ( ~ / 6 ) (  y - 2 0 6 ) ~ ~  + U + 2 )  w = 0. 

The Lax pair (2.5) and (2.6) permits one to construct the N-soliton solutions of 
equation (2.1). However, as an example for this we shall use an auto-Backlund trans- 
formation that~will be obtained below. 

First of all, let us consider an evolution equation for q. For this purpose it is 
necessary to solve equation (2.3) with respect to U and eliminate it from (2.4). 

Representing U by the expansion 

U ( X ,  t ) = U o ( X ,  t ) + & U i ( ~ ,  t ) + .  . . 
and substituting it into (2.3), one arrives at the recursion relations for vi (i=O, 1,. . .). 
(It should be kept in mind that these functions are'not identical with the Kdv solution 
and first-order correction, because q must also be expanded into an asymptotic series 
for this). In order to obtain the equation for q up to order E 

qt=Ea(q,. . . , q.-)+€Ei(q, .  . . , qxx.rxz)+O(2) (2.7) 

it is sufficient to find ua and U]. One has 

U, = qz- 8 -a  
v1 = ((3p - y - io6 )d+ (a  -4p + 37 + io6)q,q2- 6hqXq+2(3c- sap f l y  + 

+( -a  +p-27)q4+6hq3+2(-6c-1a +Sap -2hy -20M)q2-6bq  

- 6 a + a 2 ( 3 p - y - 1 0 6 ) ) / 6  
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and accordingly 

Eo= qxrx- 6q.d- 6 k  

EI = 6qxxy.w+ ( P  - 106)qxxxqz- P q . d - V q - +  (P  - 106)dx 

+(a -2P+ Y - W q z . 4 &  

- 3hqx,qx- P d +  (-20 + P -2y)qxq4+ 6hqd3 

+ 2(-6~-2Aa + 3ap -2ay -20a6)qxq2- 66q.yq 

+ (-6a-a2a + 3a2p - a2y- ioa26)qx. 

At E = O  equation (2.7) is identical to the MKdVequation, which is invariant with 
respect to q + -4. This fact allows one to use the corresponding exact pseudopotential 
as an auto-Backlund transformation for the unperturbed Kdv equation [13]. At &#O 
letting 6, h = O  without loss of generality, (2.7) is approximately invariant with respect 
to the more general substitution (see, e.g. [14] or a technique established in [15]) 

q +  -4- (2/3)~(P- 10W$).r (2.8) 

and equations (2.3) and (2.4) approximately map (2.1) into itself in the following way. 
Assume that for the PKdv equation 

U t = F o ( Y  . . . , U,xX)+EFl(U,. . ., U U X X S )  

one has the AP 

qx=Po(u, q)+ EPI(U, 4) 

qr= Qo(v, . . ., v x x  ; 4) + &QI(~, . . . , u.xxyx ; 4) 

that determines the mapping U + q of a function u(x, t )  satisfying the equation 

v,=Fo(v, ... )+ EFI (V ,... )+&2S(V ,... ; q ;  E )  S"O(1) (2.9) 

into a function q satisfying the equation 

qt=Eo(q, . . . ) + EEi(q, . . . ) + EzU(q, . . . ; E) 

&=Pdfi,a+&N&a 
B r = Q o ( & .  . ., G x ;  B ) + E Q I ( & .  . 

UEO(1). (2.10) 

Further we have for the PKdv equation above also the AP 

L x ;  B )  
B =  -4- W W P  - 106)($),+ O(2)  

determining the mapping B - 4 such that 

C,=Fo(G, . . . ) + &F@, . . . ) f &%(e, . . . ; 4;  E )  
(2.11) 

q,= Eo(4, . . . ) + SEX(?, . . . ) + EzU(g, . . . ; E) + O( 2). 
Equations (2.9)-(2.11) are identical to the PKdv or (2.7) in the first-order approxima- 
tion. Therefore the functions U, ii and q, are approximate solutions for these equations 
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in the above-defined sense. In consequence of this equations (2.3) and (2.4) and trans- 
formation (2.8) may be interpreted as the mapping 

u”v+q+g-+l%ii 

and be used as the approximate auto-Backlund transformation. (For the Kdv equation 
at ~=Owehavethemappingu=u+q+5=8). 

As an example, the previously obtained auto-Backlund transformation may be used 
to construct an approximate soliton solution. Starting from u=O, one finds the corre- 
sponding function q and spectral parameter A., which are of the simplest form 

A.= -k2/4 

q e ( (  1 -exp B ) / (  1 + exp 8))(24k + &k3(a - 2p + y + 306))/48 

Q=kx+ ( -k3-  s6k5)t 

(k is a wavenumber) at 

96a+ k4(a -2p  + yf306) = O  c=o.  

The change (2.8) then yields the approximate one-soliton solutions 

8 
2 48 2 

(906 -6p - a - 3 y )  sech4 -+2(a + y + 4 p  - 306) sech2 - 

which were also found by means of the direct perturbation method in [SI. Some of 
these~solutions and their first corrections are depicted in figure 1. 

It is interesting to consider this transformation as applied to an N-soliton interaction. 
By way of illustration, we cite results for a two-soliton solution. 

Figure 1. Plot of the PKdv soliton solution with k=2 &=O.l (l), and its first corfection 
(2).(a)a=O;~,~=I;6=0.1.(6)a=O;y=l;6=-0.1;~=-1.(C)a,~=1;6,~=0. 
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Starting from the previously derived soliton with the wavenumber k ,  and setting 
d=-k:/4, one arrives at the following expression 

uzs~2k:(X-  Y2) + (~/6)(2k!(906-6p - a - 3y)(X2-2XY2+ Y 4 )  
+(a +4p + y-306)(2k:kz(l- Y-Z) 
+eG(3X+4Y2+4Yz-I l  Y-4Z+4) 

+klki(-BXY+SX+ 12Y2+4YZ- 11 Y - 2 Z f 2 )  

+k:(3X2- 8XY+ 3X+ 4 Y 2  - 2 Y ) )  

where 

Z=(I +exp e,  +exp &+Aj2 exp(8, +e,))-' 
X= Z(k: exp el + k: exp &+ A,,(k, + k2)' exp(8, + O,))/k: 

Y=Z(klexpBl+k2exp02+A,2(kl+k2)exp(81+Bl))/k2 

Aiz=(kt-kz)2/(k~ +kz)'. 

As expected, at t-1 CO two solitons are completely separated from each other and are 
described by the expressions obtained above. 

It should be stressed that these results cover the cases when the above Lax pair is 
of the type different from that of the unperturbed one as well as the case (p=106) 
when (2.7) possesses the simplest invariance q --t -4. Nevertheless, we have the same 
behaviour of the solution, and the distinctions are only in the numerical coefficients. 
The results presented in [8, I O ]  confirm this conclusion as well. 

Scalar APS can also be applied to derive recursion formulas for approximate conser- 
vation laws. The net result can be presented by 

qx =q2+ + U + @(a +2p + y - lo6)(q4+ 2/2q'+ 220) 
+2a2(p - io6)2+ 3a.% + q - 3 ~  + y + 106)u2)/12 

qt= -- ( a 2 q + 2 g ~ + a , ~ + ~ , )  + E -  (2(-a -2p - y + 1o6)q2~,+2d2(-p+46)q~ 

(2.12) 

a 2 
ax ax. 

+ 2(a +2p - 86)qu2-'12bq~,,-66d3u- 66d2u, + d ( - y  +26)v2 

- 66/2~.~ ,~  + (- y + 2 6 ) ~ v . ~  - 66~,,)/6. (2.13) 

The procedure for finding conservation laws and adiabatic invariants is fully analogous 
to that described in 1131 for the Kdv equation and was discussed in [2]. Presenting q 
as 

(2.14) q(x, 0 = qo(x, f) + Eql(-Y, 0 + 0 ( E 2 )  

and the functions 40, q1 as 
w 

q0(x, t )  = c a-' w0,(x, o 
'-1 

q,(x,  t )= n-'w'j(x, t )  
j = - 3  
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( Woi(x, t) and Wlj(x ,  t )  are new functions) then substituting (2.14) into (2.12) and 
(2.13), omitting the terms of O(%) order, and making the coefficients at the powers of 

equal to zero, from (2.12) one obtains the recurrence formulas to determine Woj 
and Wli  with respect to Woj and Wrj ( j<i ) .  Accordingly equation (2.13) determines 
approximate conservation laws. The corresponding adiabatic invariants are of the form 

(2.15) 
J -m J -m 

and some o f  them are presented in appendix 2. 
In conclusion, it should be stressed that the scattering problem, auto-Backlund 

transformation, and recursion formulas involved cannot be derived from those for the 
higher-order Kdv equation by means of the approximate canonical transformation [lo]. 

3. ' A  two-dimensional spectral problem for an extended version of the PKdv equation 

Additional results may be given for an equation of the type [16] 

ut+ U,, + 6uux+ E( ~uzUury + 6ux,2+ xu,u + yuxxu,u + pu,u, + 5u.Txx~ux 

+ ~ u ~ ~ ~ ~ ~ u +  t l ~ ~ ~ ~ . ~ ~ + p u ~ ~ ~ ~ ~ . ~ + P U : +  a w 3 +  vuzu2)=0. (3.1) 

Here we confine ourselves to APE consistent with d ( 2 )  Lie-algebra [ S I ,  because the two- 
dimensional scattering problem can be described in t e k  of the basis {E, 8, H }  with 
the commutation relations [9] 

[E,E]=O [F,F]=O [ H , H ] = O  

[H,  E ]  = 2E [ H ,  F]=-2F [E, F] = H.  

The elements have the following two-dimensional linear representation 

E = (  0 1  )4 F = i l  0 0  o)9 "=(I  "9 
0 0  0 -1  

and the nonlinear one-dimensional representation (2.2) [ 171. (Matrix unit is not essential 
for scattering problems, because it commutates with any matrices and so adds just 
terms corresponding to conservation laws.) 

The resulting expressions for the equation determining the evolution of the~function 
4 with respect to x is written as 

qx= (v+a)E+ bH-F+ &(C.E+ CfF+ ChH)/36 (3.3) 

C.= (-392p + 3a +: 12p - 3y - 206 + 9 8 ~ ) ~ '  

+ 3a(-392p + 3a + 12/? - 5y  -86  +780)v2 

+2b2(56Op - 3a - 2 4 p + 9 y + 8 6 -  1 10u)v2+ 6 ( p -  3 x +  10q)v2 

4a2(-308p +3a + 6 p - 3 y - 2 6  +32m)v 

+4ab2(644p - 3 a - 6 p ~ + 3  y + 2 6  - , 5 6 ~ ) v + 6 a ( - v +  p - 2 x +  30q)u 

+96b4(-14p + c )v+24b2(x -  lOq)v+72bc~+36h~ + 36d 
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Cr= (56p -3a + 12p - 3 y + 8 6 -  14c)vz+4a(28p +3a +6P - 3 y - 2 6 1 - 8 ~ ) ~  

+4b2(-28p - 3a - 6p 4 3y +26 - 8c)v+  6(-v  + + 2 x -  1Oq)v + 36h 

Ch=b(-56p + 3a - 12P+3y-86+ 14~)vZ+36cv+36g 

a, b, c, d, h, g= constant. 

In addition, for the AP to be consistent with s1(2), it is necessary that the following 
relations hold for the parameters of (3.1) 

1=(224p -3a-24P +9y+86-500) /12  

5 = ( 2 8 0 , ~  - 3n - 24p + 9y+86  -7Ou)/4. 

An auxiliary time evolution problem is trivially restored from (3.3) [I31 and not 
presented here because of complexity. 

In the case of a linear AP (see (3.2)) (3.3)  corresponds to the AKNS representation 
of a scattering problem if b=A ( A  is the spectral parameter) and a=O. c, d, h, g may 
be chosen in such a way that (3.3) is reduced to some investigated spectral problem 
(for example, a quadratic [18] or an arbitrary polynomial bundle [19]). Here we do 
not consider this question. 

On the other hand, using the nonlinear representation (2.2), auto-Backlund trans- 
formations and a Lax pair can also be derived in the same way as in section 2. For 
instance, letting b = O  and a=A, one arrives at the AP that is of the form of a Riccati 
equation and corresponds to the Lax pair. And the simplest auto-BkkIund transforma- 
tion corresponding to the trivial invariance q -+ -q takes place at 

In so doing we have the relation 
x= l0q a =-8p+3  y 0,6, P, 5, 1=0. 

qx= U+ $+a+ E((-2p + y)d + z ~ ~ ( ~ * +  n)( -3p  + 7) + ( p -  2 0 7 ) ~ ~  
+4a ( 3 p  - y)ug2 + ( -'p - iov)vg2 +4a2(-3p + Y)O 
+ k (-v + p + lOv)v+ 6hv - 6 h 2  + 6d)/6 

and the following equation for q 

qr=6$qx+6Aqx- qxn+ ~ ( 4 ( - 3 P  + r)q6qx+2(-24W +SAY - V +  p-5v)q4qX 

4 ( 3 ~  - Y)q3qAxs+2(-6h- i8a2p + 6a2y-  AV +ap- 2oav)gZq, 

+ iot142qxn+ (24ap - s a y  + v - P+ 3 o v ) ~ ~ ~ ~  + IOW: 
+ (-3P + y)q&+ 6(d-hA- 5k27)qx+ 10Atlqm- vq-=)+ O(E*). 

The transformations involved can be used to construct first-order corrections to the 
N-soliton solutions of the mv equation. 

4. An approximate scattering problem and auto-Backlund transformation of the 
perturbed mdv equation 

In the previous sections the APS of the first order for the perturbed Kdv equation have 
been considered in detail. This perturbed nonlinear equation contains the terms with 
the small parameter that are presented in the higher-order Kdv equation [9]. From the 
viewpoint of theory and practice [20,21] it is interesting to consider APS for the M K ~ V  
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equation with the terms that are presented in a higher-order MKdv equation [9] 
~ , + ~ U ~ U , + U ~ ~ ~ +  E(PU~U,,,+ Y U U ~ U . ~ ~ +  ~ u : + a u , , , + C ~ ~ ~ , )  =O. (4.1) 

In order to construct an AP associating with the inverse scattering problem and 
auto-Backlund transformation, let us choose Po and Qo corresponding to the ones of 
the MKdv equation 191 
Po = uE- vF+ AH 

(4.2) Q ~ =  (-2.3 -4a% - 2 a ~ , -  u , , ) ~ +  (2v3+ 4&%- 2au,+ . .  v , x ) ~ -  2a (3+ 2 a 4 ~ .  
Proceeding in the same manner as shown above, we can find the form of PI ,  Ql and 
corresponding commutation relations. Since their detailed analysis involves difficulties, 
we mention only that PI and Ql can be written as follows 

P, = A$+ BU+ J 

QI=G(u ,..., u x , w x ; A , B , J , E , F , H ) + D  
(4.3) 

where A ,  E, J, D together with E, F, H belong to some Lie-algebra. As in section 3, 
they-can be expressed in terms of E, F, H for our purposes, and for PI we finally obtain 

PI =( (6av+66+  ( - 2 p  + y-26)u’-80A2au +4A2(p+  ~ - 3 6 ) v ) E  

+(6uu - 12&+66+ ( 2 p -  y f 2 6 ) u ’ ) F  
+2(3du + 3c+ (-10Aa +Ly-3A6)v2)H)/6.  

(Ql is presented in appendix 3). In addition, the commutation relations impose a restric- 
tion on the parameters of (4.1): 

c = - 2 0 a + / 3 + 2 y - 4 6 .  

The two-dimensional eigenvalue problem is directly determined by the formula 

qx=Po+ EPI 

if we use the representation (3.2).  On the other hand, the nonlinear representation (2.2) 
for the basis of sf(2)  results in the Backlund transformation mapping equation (4.1) 
into an equation that is invariant with respect to k+-A when 6, c=O; p=lOa, and 
the AP can be employed as an auto-Biicklund transformation by analogy with the 
corresponding pseudopotential of the MKdv equation [22] .  

First, let us derive exact pseudopotentials corresponding to the equations for an 
MKdv sohtion and next correction (see section I). Replacing q and U in (4.2) and (4.3) 
by the formal expansions 

q = q o ( x , t o , t l , .  . . )+Eql(X, tO, t l . .  .)+. 
v=vo(x,to,t l  ...)+ E U I ( X , f O , t l  ...)+... 

using the method of multiple scales 

t i= E‘t 
a a  a 
at at, at, 
_=_ + E - + . . .  

and equating each coefficients in E to zero, one obtains the pseudopotentials for uo and 
uI . It should be stressed that at this stage in the expansion for q E plays the role of a 
graduating parameter (as for instance in Hirota’s method [9, 131). 
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Then starting from u = O  and lettinga=A2(l0a-y+36)/3, one has 

qo = exp e 
q1= Cexp(20) C=constant 

e= 2 r ~ x f 8 k ~ i ~ f  32aasil 

and although these functions are unbounded, the exact pseudopotentials involved result 
in correct expressions for vo and uI . Replacing A +  -1, one finally obtains new uo, U, 

and the corresponding approximate one-soliton solution of (4.1) 

U =  -21 sech e +2/3&a3((-ioa + y-  36) sech e - 2(10a - 6 )  sech' e). 
Now let us dwell on a particular case of equation (4.1). At p, y, 6=0; a=l  one 

has the equation 

u,+6~ux+us ,+  ~(-2Ou~u,+u,,,)=O (4.4) 

ut +f(u)ux + U,, + &ux,, = 0. (4.5) 

which is a special case of 

The latter may be considered as a generalized Kawahara equation [23].  Equation (4.4) 
is derived from (4.5) as the leading order approximation in an appropriate asymptotic 
sense under the assumption of weak nonlinearity. 

The addend -2O&u'U, in (4.4) can be shown to be necessary for the existence of the 
AP leading to the scattering problem. For this purpose it is sufficient to use just two 
commutation relations 

[E, A ] - [ F ,  A ] - ( 2 0 / 3 ) 1 ( E + F ) = O  (4.6) 

[E, [E, IF-E,AlIl+[E, E [E-F,Al11+4[F-E,Al+[F,  [E, [E-F,AlIl  

+[F, [F, [F-E ,A] ] ] -32&(E+F)=O (4.7) 
which are obtained by substituting P I ,  Ql into (1.6) and equating the coefficients at U,, 
and us to zero. 

From (4.6) one obtains 

[E, A ]  = [F, A ]  + 2 0 A ( E + F ) / 3 .  

Inserting this expression into (4.7), one has 

a (E+ F) =o afo. 
That is (4.6) and (4.7) are not consistent. Thus, for the equation 

u , + 6 ~ u x + u x x ~ +  &uuux=O 

there exists no AP of the first kind [3] in any dimension that prolongs the MKdv scattering 
problem. 

5. Conclusions 

It is necessary to stress that, although alternative techniques can be used to obtain 
approximate auto-Backlund transformations, conservation laws, etc. (e.g. the Lax pair 
approach instead of pseudopotentials or direct methods to derive one-soliton solutions), 
they are not applicable in many cases. 
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In the case of the PKdv equation, for example, the spectral problem of the Lax pair 
depends on U and U,, while the related AP depends only on U. As a result, we have 
solved the ordinary differential equations for finding its form, while the presence of U, 
or any higher derivatives would lead to a set of PDES. The latter could not be solved in 
a general case. Hence the result has been obtained in the simpler manner, although the 
final expressions are, of course, the same. 

In the case of the perturbed MKdv, the use~of the Lax representation would result 
in highly cumbersome computations: In addition, this representation is not typical for 
such equations. 

One more limitation of the Lax approach is associated with initial assumptions 
about the order of a spectral operator. On the other hand, in the framework of the AP 
approach this problem is solved by closing a Lie algebra and finding its representation. 
For instance, in section 4 it has been shown that there is no scattering problem (related 
to the simplest AP of the first kind) for some parameters. In other words, there is no 
related Lax pair with an operator of any order as well. 

Moreover, frequently it is necessary to investigate special type equations and to 
prolong, for example, linearizing transformations or a finite number of conservation 
laws. In such cases APS are the only applicable technique. Finally, APS allow one to 
derive spectral problems, auto-Backlund transformations, and conservation laws within 
the framework of a unified approach. All the results mentioned above are related to 
each other, because they are associated with the same APS or their special cases. 

Next it is important to point out two problems, which are still to be solved. 
First, in order~to make~the method fully rigorous, it is necessary to show that 

l u ( X , r ;  & ) - U ( X ,  t ;  E)[=O(&ln)for &-+O 
as well as to know the time domain in which this is indeed valid. This is actual both 
for approximate Backlund transformations and for scattering problems 124-261. For 
example, although the scattering data appear to be only slightly perturbed on the time- 
scale under consideration, one cannot yet conclude that the same holds for u(n, t ) .  

Second, as in the case of exact pseudopotentials, the existence of APS is a consequence 
of very special balance between the various terms in an equation and not always takes 
place as shown in section 4. At the same time, as shown above for the perturbed 
Kdv, MKdv and perturbed NLS 1271 equations, there exist approximately ‘integrable’ 
perturbations associated to Lax pairs or related APE (S-integrable according to 
F Calogero [351). On the one hand, perturbed equations that are of great interest in 
physics and at the same time admit approximate scattering problems can be sequentially 
considered and classified. On the other hand, it is important to propose criteria or signs 
which could characterize them. Investigations in this field have been carried out in the 
last few years [14, 15,27,28]. In [27] this attempt was undertaken on the basis of the 
hypotheses on the Painleve property [29,30] and the existence of LieBacklund (non- 
Lie-point) symmetries [31]. It collapsed, because the original definitions were used. In 
[14,28] the theory of approximate symmetries was established. The obtained approxi- 
mate Lie-Backlund ones of the P K ~ V  indicate the existence of a Lax pair. Recently in 
[15], a generalization of the Painleve approach was proposed and modified for perturbed 
PDB. These late results also indicate such integrability. In particular, the extra constraint 
r=-20a+P+2y-46 for (4.1) was obtained. 

In the future it would be of interest to consider their use for higher order perturba- 
tions and derived so-called resonance conditions [ 10, 321 on the parameters of 
perturbations. 
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All these problems are, of course, beyond the scope of the present work and require 
special study and review (see also [33, 341). 
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Appendix 1 

In the case of equation (2.1) for P I  and Ql associated with 

p0= (a+ v ) ~ - ~  

Qo = (4A2+2Av- 2u2- ~,,)E+2(v -2A)F-UXH 

one has, using (1.6), the equation 

-(-av2u,+pvu,,,+ yu,u,+ 6vxxxxr) - PO- (~VV,+U,~ )  -PI + [Po, QII+[PI, Qol a a 
ao av 
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- i6a2m-a3[~, [E, [E, BI]I+~’[E, [E, [F. B]]] -~~[E,  [E, [J,  E]]] 

+ a2[E,  tF, [E, NI1 - [ E  [F, 411 + XE, [ E  [J ,  Ell1 - X E ,  [J,  HI1 

- 4 a 2 [ ~ ,  BI + [E. DI +n2[F, [E, [E, BIII -XF ,  [E, [F, BIII 

+a[& [E, [J,  EIII -w [ E  [E, BIII +E E E BIII-[F, v, EIII 
+ [F, [J,  HI] + 4 a [ ~ ,  BI + 2 n [ ~ ,  E ]  + 214 F I  = o 

L([E,  D] +4[J, E] -4[J, F]) - [F, D] =O. 

degree 

A =(-3p + y + 106)/6 

J= @( a -2p + y + 306)/6 +$c+Ahq+ bq - h + a  

These relations have a particular solution in the form of polynomials of the second 

B=$(-a-2P-y+ 106)/6+hq-c 

D = (4a2q2(a - 2p + y + 186) + izh$ + iza$ + i2a’hq + izabq +2a3(a - 2p + y + 66) 

- i2aZc+z4h)/3 a, b, c, h=constant. (A1.2) 

Appendix 2 

Here we present the first four non-trivial adiabatic invariants (2.15) obtained via the 
recursion relations (2.12) and (2.13). The corresponding expressions are as 
follows 

PI=J-- u d x  
+m +m +m 

p3= Lm 1- m 
- -6uZdx+~(2P-y )  u:dx 

+m +m 

(602 + 180uu, + 150~:) dx - E ( 10u2u,( -a - 14p + 87 - 506) 
p 5 = i ,  J-, 

+ IOu&(-a- 19p+ 13y- l006)+&(-a-10~+5y-306)) dx 
+m 

p7= [-, (Z10u4+ 1’~60$u,,+ 2100uu:+ 756u~i~,+798u:,) dx 

+m 

(28u3u,,(-4a-33P+ 16y- 1106) ~ 

+ 14du:(-14a - 1388 + 81 y -6606) 

+ 8 4 u u ~ ~ ~ ~ ~ ( - 6 a  - 278 + 13y - 1706) 

+ 14u$,(-39a- 178p+83y-10506) 

+ 2&=( -425a - 18248 + 931 y - 131306) 

+ u:,(3a + I5p - 7y+806)) dx 

(the function U has been replaced by U for clearness). 
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Appendix 3 

Here we present the expression for Qt (4.3) associated with Po and Qo (4 .2)  

Ql =(C,E+ CrF+ ChH)/6 

and 

c,= 16a4(-p- y + 3 6 +  1 4 0 ) ~ + 8 a ~ ( - ~ -  y + 3 6 +  1 4 ~ ) ~ ~  

-t 4L2((-2p - 37’ + 86 +48a)v3+ (-/3 - y + 3 6 + 4 0 ) 0 . ~ . ~ -  6nu - 6b) 

+ 2A((4a - y)u2ux- 6au,,-6au,-24cu)+ 3(2(/3 - y 1-28 + 4 a ) d  

+ (-7 + Z ~ ) V ~ V , , -  2ab,-hv3 -2av,,-4b~’- 4 ~ 0 , ~ )  

Cr= 96d4av+48k3(d -  au,) t 4Az((y - 26- 8a)d + 6av,,- 6au - 66) 

+ 3 ( 2 ( y - / 3 - 2 6 - 4 a ) v S +  (y -28 )v2oXx  

+ 2 6 ~ v ~ + 2 a v , ~ . ~ ~ ~ - 4 a v ~ - 2 a v , - 4 b v ~ - 4 c u , )  

+2~(-y+4~)vZv,-6au, ,+6av,+ 12dJ+24cv)) 

Ch= -96Asa +8A3(-p- y+36+ 14a)u2-24d2(dv+3c) 

+ 2A((/3-4y+ 106+ 32a)v4+( -2y+8a+66)vu ,  

+ ( y  - 36 - 4a)u:- 6dux)+ 6(-2dv3 -dozv +2bv,-2cv2). 

Po is presented in section 4. 
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